Devious Distortions: Durston or Myers?
or
Estimating the Probability of Functional Biological Proteins

Kirk Durston, Ph.D. Biophysics

A few days after his 2009 debate with me on the existence of God, well-known
atheist, PZ Myers, posted a blog with the title, ‘Durston’s Devious Distortions’, in
which he attempted to address my claim that amino acid sequences coding for
biological protein families have an astonishingly low probability ... so low that they
definitively falsify the hypothesis that biological proteins could have been
assembled via an evolutionary process.

For his resource material, Myers referred to an online video of a lecture I gave at the
University of Edinburgh about a year earlier. That video was for a general,
interdisciplinary audience and did not actually discuss how the probabilities of
biological proteins are calculated. Given this absence of information, Myers made
some assumptions as to how I calculate protein probabilities. It appears that he did
not check his own numbers by plugging them back into the relevant equation to see
if they gave the results | had obtained. Those who tried to use Myers’ numbers found
that they were incorrect, not yielding anything close to the results for SecY or RecA
that [ had published in the literature and shown in the video. Unfortunately, some
atheists who follow Myers, unquestioningly accepted his explanation without
checking his numbers, thus spreading Myers’ confusion.

In reality, the probabilities of biological proteins were calculated using a two-step
procedure. The first step was to calculate the functional complexity required to code
for a particular protein using a method I had published in 2007.[1] That paper was
referenced in the video in a slide titled, ‘Case 3: Average protein’ so that inquiring
minds could obtain further details. Once a value was obtained, the second step was
to plug that value into the equation I showed in the video and solve for the
probability. Here, I shall demonstrate how these probabilities can be calculated
using real multiple sequence alignment data for protein families.

Note: For those with no science background, or those who do not wish to slug
through the math and technical bits, skip sections 3 &4.

1. Functional Information

In 2003, Jack Szostak published a short article in Nature, pointing out that classical
information theory did not consider the meaning or functionality of a message. For
biology, however, whether or not a sequence is functional is very important.
Szostak, therefore, introduced the need for a new measure of information, which he
called functional information.[2] In 2007, Robert Hazen and three other colleagues,
among whom was Szostak, published a definition of functional information I(Ex) in
the form of
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I(Ex) = -logz[M(EX)/N], (1)

where M(E)) is the number of different sequences that meet or exceed the required
level of function within the cell and N is the total number of possible sequences,
both functional and non-functional.[3] The ratio M(Ex)/N, therefore, represents the
probability of a functional sequence within the larger set of all possible sequences.

To give a very simple example how Eqn. (1) can be applied, imagine a combination
lock that requires a three-number combination, each number having 100 options
(e.g., 0 to 99). The total number of possible combinations would be N =100 or
1,000,000. Let us suppose that there are three combinations that will actually open
the lock, so M(Ex) = 3. The probability M(Ex)/N of dialing in three numbers and
opening the lock is 3 chances in 1,000,000 or .000003. The amount of functional
information I(Ex) required to specify a functional combination, using Eqn. (1), would
be 18 bits, where a ‘bit’ is a unit of information in classical information theory.

Unfortunately, for proteins M(E) is an unknown number. That leaves us with two
unknowns, I(Ex) and M(Ey), and only one equation, so we are unable to use Eqn. (1)
by itself to calculate the probability M(Ex)/N or the functional information I(Ex)
required to code for a functional protein sequence. Another equation is needed.

2. Measuring Functional Complexity

Functional Information has two subsets, prescriptive and descriptive
information.[4] Prescriptive Information (PI) provides the instructions that
determine the outcome. Computer software is an example of PI. Descriptive
Information (DI) merely describes an outcome and is useful only to minds capable of
appreciating a good description.

There is not yet general agreement as to how to measure functional information and
there is still ongoing discussion as to what information actually is. Also, some prefer
to use the term ‘complexity’ rather than ‘information’. Furthermore, there is a
difference between defining functional information and functional complexity and
measuring it. Although Hazen et al. stated that they were providing a definition of
functional information, it might be more cautious to say that they were providing a
way to measure functional information. There may be various ways or methods to
measure or estimate functional information, some of which may be more accurate
than others. For the sake of this discussion, however, let us accept their definition
and work from there.

Since Eqn. (1) has two unknowns when applied to proteins, it cannot be used by
itself. I and my colleagues published a different method that enabled us to measure
the functional complexity required to code for a functional protein.[1] Whether one
prefers to call it functional information or functional complexity, both Hazen’s Eqn.
(1) and our method are based upon the same concept of Shannon uncertainty with
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the joint variable of function. Ours focuses on the probability distributions of the
amino acids at each site in the multiple aligned sequences to calculate the Shannon
uncertainties, and Hazen'’s approach focuses on the probability distribution of the
entire set of sequences. In their Eqn. (1), all sequences are assumed to be equally
probable. Thus, we have two equations to solve two unknowns. Using the method in
our paper, the functional complexity required for a functional sequence is measured
by the change in functional uncertainty H(X(¢)) of some data set (X,(¢)) between the
ground state (g) and the functional state (f) at some time ¢ and is described as

C=AH X,(1), X(1)), 2)

where C is equivalent to Hazen’s I(Ex) used in Eqn. (1) and

A H (X(1), X(t,)) = HX(#)) — HX(1)) 3)
and
H(X(1) = - X P(X(1)) logP(X(1)). “4)

If all options are equally probable, then

HX(1)=- X (1/W) log (1/W) = log W (&)

where W represents the total number of possible options. To apply this method of
measuring functional information to proteins of length L amino acids, W = 20 amino
acids, Eqns. (2-5) can be assembled to give a measure of functional complexity as
follows,

=1(E,)= Y |log20- ¥ P(X,(1))logP(X, (1))
Jj=1.L i=1,20 . (6)

~

The summation within the brackets is done for the probabilities of each of the 20
amino acids at a particular site j in the amino acid sequence. The results are then
summed for all the sites from 1 to L. For more details, please see our paper.[1]
Hazen’s Eqn. (1) and our Eqn. (6) now put us in a position of being able to calculate
I(Ex), M(Ex) and the probability M(Ex)/N. First, we can use Eqn. (6) to solve for I(Ex).
Once a value for I(Ex) has been obtained, we can insert it into Eqn. (1) to solve for
the probability M(Ex)/N. Thus, the two equations together can give us the
probability M(Ex)/N of a functional protein.

3. An Example

This method was applied to 35 protein families, including the universal protein
RecA mentioned in the video, which is an average length protein found in all life



forms.[1] A total of 1,553 sequences (not to be confused with M(Ex) which is an
unknown and likely much greater than the known functional sequences) were
downloaded from the online protein family database Pfam. The functional
information (C or I(Ex)) required to code for a functional member of the RecA
protein family was found to be 832 Functional Bits (Fits). This value can be inserted
into Hazen’s Eqn. (1) to get

832 = -logz2[M(Ex)/N]

allowing us to solve for the probability M(Ex)/N, which turns out to be 10-25, the
number shown in the video mentioned earlier. To clarify, the probability of
obtaining a functional sequence for RecA in a single sampling is approximately 1
chance in 1 with 250 zeros after it. Evolutionary biology, contends that there were a
vast number of evolutionary samplings. Using published estimates for fast mutation
rates, total number of individual life forms on earth, length of genomes, and so forth,
we can estimate that the total number of different sequences possible in four billion
years was not more than 1042. This makes the very generous assumption that no
sequences were ever repeated. A published, ‘extreme upper limit’ puts the
maximum number of samplings at 1043.[5] To put this in perspective, we have only
1043 opportunities to find something that, on average, would require closer to 10250
trials. In other words, the entire sum of mutations, insertions and deletions,
operating over four billion years, would fall short by more than 200 orders of
magnitude of producing a functional RecA sequence. Perhaps we got unbelievably
lucky, for it is the nature of probabilities that one might not have to use 10250 tries to
obtain a functional RecA sequence; one could be fortunate enough to obtain it on the
very first attempt. Life requires, however, tens of thousands of proteins. Getting
massively lucky tens of thousands of times does not qualify as a scientific
explanation for the origin of life.

The number of amino acid sites in the multiple sequence alignment for RecA was
240. For proteins, there are commonly 20 different amino acid options at each site,
so the total number of possible sequences is N = 20240 (not 1043 as Myers incorrectly
assumed). We can then solve for the total number of functional sequences that
might code for RecA as follows,

M(E,) = 20240(10-250)

or M(Ex) = 102, This is an enormous number of possible functional sequences for
RecA (not merely ‘1’ as Myers incorrectly assumed). The sheer number of possible
non-functional sequences, however, makes the probability of assembling a
functional sequence virtually zero for all practical purposes.

4. The Probabilities Get Worse

This measure of functional information is a good first-pass estimate, but the
situation is actually far worse for an evolutionary search. In the method described



above and as noted in our paper, each site in an amino acid protein sequence is
assumed to be independent of all other sites in the sequence. In reality, we know
that this is not the case. There are numerous sites in the sequence that are mutually
interdependent with other sites somewhere else in the sequence. A more recent
paper shows how these interdependencies can be located within multiple sequence
alignments.[6] These interdependencies greatly reduce the number of possible
functional protein sequences by many orders of magnitude, reducing the
probabilities by many orders of magnitude. In other words, the numbers we
obtained for RecA above are exceedingly generous; the actual situation is far worse
for an evolutionary process. Nevertheless, for the purpose of this example, let us use
the very generous numbers calculated above.

5. Implications for Evolution

RecA is a universal protein, found in all life forms. For that reason, evolutionary
biologists believe it has descended from the Last Universal Common Ancestor
(LUCA). Thus, it would have been a component of the earliest life forms with very
little time to appear. We have just seen that the probability of obtaining Rec A is one
chance in 10250 (or one chance in 1 with 250 zeros after it). The common response
to this is that there has been more than just one chance to generate a sequence for
RecA. In fact, it could be as many as 1043 chances. Of course, that is more than 200
orders of magnitude too few chances to reasonably expect to obtain RecA, but surely
if we took the entire universe as our physical system, there would be enough
chances to get life going somewhere, and maybe our planet is the winner of the
lottery.

The number of particles in the observable universe is often estimated to be around
1089, Let us suppose that each one of these particles was actually a sequence of 300
amino acids forming an average length protein. How many possible combinations
could be sampled if all 1080 proteins in this imaginary protein universe recombined
once per second for 13 billions years? The answer turns out to be approximately
1097 different combinations. Doubtless, many of them would be repeats of earlier
combinations, but let us ignore that. The entire evolutionary capacity of the
universe, if it were nothing but proteins recombining every second, is still more than
150 orders of magnitude too inadequate to expect to produce any of the 1062
possible functional sequences for RecA.

Of course, the problem is much greater than merely finding one protein family in an
evolutionary search. The simplest life form is thought to contain approximately 151
to 250 protein-coding genes.[7, 8] But the problem is not merely limited to getting
the first life form. To get the full diversity of life requires thousands of additional
protein families. The usual response is to appeal to evolutionary biology’s god-of-
the-gaps, and say that natural selection did it. However, novel biological protein
families represent needle-in-the-haystack problems for an evolutionary algorithmic
search, not hill-climbing problems as many assume. Thus, natural selection is of no
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use in guiding an evolutionary trajectory across non-folding sequence space. The
genesis of novel protein families must proceed via a blind, unguided random walk
across non-folding sequence space.[9] Natural selection actually hinders this
process, tending to drive an evolving amino acid sequence back into functional
sequence space.[10] Novel proteins are relatively easy to assemble; any amino acid
sequence will do, but those that produce stable-folding, functional sequences seem
to be extremely rare.

A more formal way to evaluate the hypothesis that biological proteins were
obtained in a blind evolutionary process is to apply the Universal Plausibility Metric
(UPM), where an hypothesis is definitively operationally falsified if the UPM for that
hypothesis is less than 1.[11] For RecA occurring somewhere within the universe
during its history to date, the UPM = 10-142, which means that the hypothesis that it
could be located by an evolutionary process is definitively falsified. On the other
hand, RecA requires only 832 Fits (Functional Bits) of information to sequence, a
quantity of functional information that intelligence can easily generate.

6. Fingerprints of Intelligence

[t is increasingly acknowledged in the literature that the functional information
encoded in the genomes of life is essentially software designed for molecular
computers.[12-14] It has also been pointed out in the literature that functional
sequence complexity is only observed in human languages, computer code and in
DNA, and requires ‘rational agency’ to encode.[15] It follows from this that
statistically significant levels of functional complexity or functional information is
the fingerprint of a rational agent, or an intelligent mind.

A ‘god-of-the-gaps’ argument follows the idea that if we do not know what did it,
then God did. At best, it is a weak argument based upon ignorance. In the case of
functional information or functional complexity, we do know what can produce such
an effect; rational agency. We do it all the time whenever we send an email, type out
a text, write some software. An intelligent mind is an empirically verified candidate
for the sequencing of statistically significant levels of functional sequence
complexity. Chance and necessity can produce statistically trivial levels of functional
complexity or functional information but nothing of any statistical significance.
Thus, we have only one empirically verified candidate for the origin of functional
information or functional complexity ..... rational agency. Statistically significant
levels of functional information or functional complexity are a positive marker for
intelligence.

The argument can be summarized as follows:
1. A unique attribute of intelligence is the ability to produce statistically significant

levels of functional information.
2. The gene that codes for RecA encodes a statistically significant level of functional



information.
3. Therefore, RecA has the positive fingerprints of intelligence all over it.

[t should be pointed out that premise (1) is verifiable and falsifiable. If one is a priori
committed to the belief that rational agency was not involved in the origin of life,
then one must falsify premise (1) either in the lab or through computer simulations
that utilize a fitness function that accurately models a random walk through non-
folding sequence space to solve a needle-in-the-haystack problem.

One response has been to suggest that nylonase[16] is an example of nature
producing functional information. This response illustrates a chronic lack of rigor
that is often evident in such assertions. A method has been published for measuring
the change in functional complexity due to an evolutionary process.[1] The change
in functional complexity required to produce the novel function of breaking down
nylon is actually trivial, of no statistical significance. It is a mistake to assume that a
novel function is equivalent to a statistically significant increase in functional
information or functional complexity. Novel functions can be achieved with little or
no change in functional information. Any claims that nature can produce a non-
trivial, statistically significant gain in functional information needs to be supported
by some actual numbers. A method is available in the literature for doing that.

Functional complexity, or functional information as defined by Hazen et al., provides
a marker or fingerprint of intelligence. Thus, the software of life, encoded in the
genomes of life, has the fingerprints of intelligence all over them. To clarify, the
presence of functional information encoded in a genome provides positive evidence for
an intelligent origin. The functional information may be deteriorating, as it always
does in all information storage media, but its source has to be a rational agent. It is
the only empirically verified option on the table. Everything science is doing right
now in the rational design of artificial genomes and proteins supports the
hypothesis that rational design is an essential component of DNA and protein
design.

7. Discussion

Axe found that only about one in 1094 sequences forms any working domain.[17]
The extreme improbability of finding a single, functional protein was noted in the
literature as early as 2001 by Taylor when he pointed out that even a protein library
with the mass of the entire earth would only compose a miniscule portion of
sequence space. He stated that ‘intelligent design’ in the lab will be required to
create novel protein scaffolds.[18] This prediction has certainly been borne out in
recent advances in designing artificial proteins where ‘rational design’ has been
shown to be necessary.[19-21] For example, a recent paper on designed proteins
uses the word ‘designed’ 29 times in the text, title, captions and abstract, the word
‘design’ 11 times, and ‘strategy’ 3 times.[20] The point to note here is that the
ongoing synthesis of artificial proteins is an example of intelligent design in action.



The origin of RNA replication reduces to the problem of how to obtain the properly
coded functional information to produce the relevant components needed for RNA
replication. Evolutionary biologist Eugene Koonin has determined that the
probability of obtaining RNA replication is so low that the best explanation for the
origin of life is that there must be an infinite number of universes.[22, 23] Invoking
an infinite number of universes is purely metaphysical and would constitute
another of science’s own ‘god-of-the-gaps’.

Barring the existence of an untestable, infinite number of universes, there is an
alternate, testable hypothesis for the origin of the functional information encoded in
the genomes of life; premise (1) given in the previous section. We can empirically
verify intelligence can produce huge amounts of functional information; every way
we can test the theory that mutations can do it is soundly, and consistently falsified.
There is only one empirically verifiable option on the table; rational agency and we
are demonstrating that in the lab every time we construct an artificial folding
protein using information we have reverse engineered from biological proteins.

8. Conclusions

Here, I have shown how to estimate the probability of a functional protein using
real, multiple sequence alignment data. In explaining how this is done, [ have
hopefully added some clarity to this process so that others will not make the kind of
incorrect assumptions Myers did.

Actual M(Ex)/N probabilities estimated from real world data available on Pfam
exposes a colossal problem for the kind of evolution that would be required to
produce novel life forms. That is why, after a century and a half of science smashing
its head against a solid rock, the ‘main forces directing long-term molecular
evolution remain obscure.”[10]

The idea that a Darwinian process can produce the kind of functional information
required to code for the average functional protein family, not to mention all of
biological life, is a popular one, but when actually tested against real data, is
definitively falsified. The probability of coding the functional information into a
genome to specify a functional, biological protein is so small, we cannot expect it to
happen even once in the history of the universe. Of course, we can predict that
mutations, insertions and deletions are easily capable of producing novel proteins, if
we simply define a protein as an amino acid sequence, but the kind of biological
proteins that are essential to life are highly sophisticated components that are
extremely rare in sequence space, according to the multiple sequence alignment
data. It is increasingly being recognized that the functional information encoded in
the genomes of life is highly complex and sophisticated computer code or ‘DNA
software’ as Craig Venter describes it.[13] Intelligence can easily produce the levels
of functional information we observe in biological life and computer software. There
is only one observable, testable and scientifically verifiable option on the table;



rational agency. The genomes of life have the fingerprints of intelligence all over
them.
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