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ABSTRACT. It is generally recognized that biopolymers such as DNA, RNA and
proteins demonstrate a form of sequence complexity. Recent work has provided a
more detailed insight into biopolymeric complexity by introducing three types of
sequence complexity, Random Sequence Complexity (RSC), Ordered Sequence
Complexity (OSC) and Functional Sequence Complexity (FSC). The primary feature
of FSC that distinguishes it from RSC and OSC, is the imposition of functional
controls upon the sequence. In this paper, we propose that it can be measured using an
extended form of Shannon uncertainty that includes a variable of functionality.
Clearly, FSC can be found in human languages and carefully designed computer code,
but the measure we propose in this paper reveals that it is also found in biopolymers.
In the case of proteins, the measure of FSC provides an estimate for the target size of
a protein family in the amino acid sequence space, revealing that functional sequences
occupy an extremely small fraction of sequence space. Due to the miniscule size of
functional sequence space for a given protein family, as mutations accumulate there
will be an increasing likelihood of moving the mutated sequence outside that space,

with a corresponding deleterious effect on FSC.
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Introduction: sequence complexity in biopolymers

It has recently been pointed out that traditional notions of complexity are
inadequate when applied to biosequences [1, 2]. For example, characterizing
biosequence complexity in terms of algorithmic complexity fails to account for
the redundancy found in numerous different sequences even when they have
the same function [1]. Functional controls imposed upon a biological
sequence are critical for maintaining specific functions of the sequence within
the cell and, ultimately, for the existence of life. A more rigorous formulation
for complexity in biosequences that incorporates functionality is therefore
required. Abel and Trevors have defined three types of sequence complexity,
only one of which accounts for functional controls imposed upon biosequences
such as DNA, RNA and proteins. We will discuss these three types of
complexity within the context of biopolymers, with a special focus on that

form of sequence complexity that incorporates functionality.

1. Random sequence complexity

Abel and Trevors have defined Random Sequence Complexity (RSC) as
a linear string of stochastically linked units, the sequencing of which is
dynamically inert, statistically unweighted, and is unchosen by agents; a
random sequence of independent and equiprobable unit occurrence [3].
Implicitly, four components contribute to RSC. First, the sequence is
composed of sites, or loci. Second, there is the importance of the symbols that

could occupy each site in the sequence. Third, there is a complete absence of
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constraints and controls on these symbols, statistically making all options
equiprobable. Finally, the value of the symbol at each site must be independent
of the values at any other site, such that no site is constrained by any other site
in the sequence. An example of RSC can be found in atactic polystyrene,
where the orientation of the side chains at each site appears to be completely
unconstrained. In summary, if no agent or law of nature controls or constrains
the outcomes of any site in a sequence, then they are presumed to be

equiprobable, and the complexity of the sequence is characterized as RSC.

2. Ordered sequence complexity

Ordered Sequence Complexity (OSC) is defined as a linear string of
linked units, the sequencing of which is patterned either by the natural
regularities described by physical laws (necessity) or by statistically weighted
means (e.g., unequal availability of units), but which is not patterned by
deliberate choice contingency (agency) [3]. Examples of OSC are repeating
patterns arising out of chaotic interactions or a string of repeating alphabet
characters such as TGTGTGTGTGTG ... In nature, OSC is presumed to occur
when laws of nature impose such tight constraints that there is no possibility of
variation. In this case, repeatable, highly constrained sequences are produced
that cannot, therefore, incorporate new functional inputs as functional
information. An example of OSC is the highly ordered and repeating sequence
obtained through the formation of polyadenosine absorbed onto the surface of

montmorillonite clay [4].
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3. Functional sequence complexity

Given the limitations discussed above, neither RSC, OSC, nor a
combination of the two, are capable of producing significant levels of FSC
since neither, by definition, are controlled by functionality [5]. Szostak [1] has
further pointed out that, traditionally, neither algorithmic complexity [6] nor
Shannon’s measure of uncertainty [7] is adequate for biopolymers. Functional
Sequence Complexity (FSC) is therefore defined as a linear, digital,
cybernetic string of symbols representing syntactic, semantic and pragmatic
prescription, each successive symbol in the string is a representation of a
decision-node configurable switch-setting---a specific selection for function
[3]. Volitional agency (control) is implicitly required to properly set each
configurable-switch-position symbol to achieve functionality. Examples of
FSC are said to occur in well-designed computer code and, naturally, in human
languages. For biopolymers, functionality can be a result of structural
requirements of protein families [17], cellular processes, or specific
biochemical reactions [8]. Furthermore, biological functions can be nested in a
hierarchical manner from the sub-molecular domain structure necessary for the
3D structure of an enzyme, all the way up to the global function of entire
species of organisms. Comparing the differences between OSC and RSC on
the one hand, and FSC on the other, it is the requirement of functionality that
is the distinguishing feature between them.

Recent advances in the synthesis of RNA chains in water are

encouraging so far as providing a storage medium for prescriptive information
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and FSC [9]. However, the much greater challenge of encoding FSC within
RNA remains. If a RNA sequence is highly ordered, it will tend toward OSC.
If the highly ordered sequence can mutate, it will tend toward RSC over time.
To become functional, controls will be required to properly configure each

switch-setting (nucleotide) to select for function.

4. Measuring FSC

The definition of FSC supplied above is essentially a definition of
functional information. Shannon uncertainty is well known as a method to
measure variability in data and as a measurement of information.
Unfortunately, Shannon uncertainty makes no distinction between functional
and nonfunctional variability and complexity, as Szostak has pointed out [1].
Hazen, Szostak ef al. have advanced an equation for the measurement of

functional information as follows:

I(Ey) = - logo[M(Ex)/ W] (D)

where E, is the degree of function x (a measure of a sequence’s functionality
with regard to function x), M(E,) is the number of different sequences or
configurations that meet or exceed E,, and W is the total number of possible
sequences or configurations. (Note that Hazen et al. use the notation N instead
of W, but W is used here to be consistent with the notations and equations that
follow.) Here we present an alternate method to measure functional
information where an estimate of the probability distribution may be required.

For example, in the case of a protein family the data may provide only the
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probability of each amino acid at each site, but not the total number of
functional sequences. Our proposed method allows uncertainty to be managed
when sequences with functionality are not exactly known. It also provides
further analyses making use of the sequence distribution obtained [10].
Shannon uncertainty can be modified as a joint measure to analyze
available data when the data is known to represent a particular function and is
entered as input. This modified form of Shannon uncertainty we call functional

uncertainty (Hy) [11] and is defined as:

HX,(0) = - S PX/(1)) logP(X,(1)) @

where Xrdenotes the data specified with known functionality and ¢ represents
time. In the case of a protein family, the data X; is in the form of a multiple
sequence alignment specified by their family label when downloaded from
Pfam [12]. When the dataset, composed of a multiple sequence alignment, is
corrupted either by irrelevant sequences or irrelevant amino acids within an
included sequence, there are methods such as ‘noise cleaning’ to address that
problem. P(X)) is the a posteriori probability of the data with the given
functionality F =f, or P(X)) = P(X| f). An explanation as to how this is
calculated for proteins is given in section (5).

It may be useful to measure the change in H(X)) if certain mutations,
insertions or deletions occur between time i and time j resulting in a loss, gain,
or change in function. For this reason the time variable 7 is included in Eqn (2).
For example, for a protein family that shares a common 3D structure that
performs a known, specific functionality task f, X, represents the dataset X of

known sequences that satisfy the functionality /. Changes in sequence due to
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mutations may introduce a change in the specified functionality between time i
and time j. (We are currently developing methods to address the dataset when
sub-functionality is considered, such as a portion of the dataset coding
structural domains within the larger structure of a protein. The sub-
functionality in this case could be the function of contributing a critical
structural component within the larger 3D structure that defines the larger
biological function. In this view, functionality can form a nested hierarchy,
composed of lower levels of different functionalities contributing to higher
levels of global functionality.

There are three states of uncertainty to consider when measuring
functional complexity. The ground state g is the state of greatest uncertainty
permitted by the constraints imposed by the physical system when no
biological function is required or present. Since the physical system may
impose constraints on what type of sequences are permitted, it may be the case
that not all sequences are equally probable. A special case of the ground state
occurs when the physical system imposes no constraints on sequencing
whatsoever, with the result that all possible sequences are equiprobable. This
special case is classified as the null state o. The third state is that which
produces the function under investigation, denoted as the functional state f.

The measure of FSC, denoted as g, is the change in functional

uncertainty between the ground state g and the functional state f, or

C=AH X,(1), X(1)) . 3)
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For proteins, the data suggests that actual dipeptide frequencies and single
nucleotide frequencies for proteins are closer to random than ordered [13]. For
this reason, the ground state g for biopolymers can be approximated by the null
state o. If we let the number of all possible sequences be represented by W and
the length of each sequence by N and the number of options at each site in the
sequence be denoted by m, then W = m". For example, for a 300 amino acid
(aa) protein, if we assume 20 aa options per site, then W= 20", If the FSC if a
single column within a multiple sequence alignment is being measured, then N
=1 and W =m. If the FSC of an interdependent cluster of sites is being
measured, then N = the number of sites in the cluster. Since for the null state,

all options are equally probable, P(X,(,)) = 1/W and

HX(1)=- 3 (1/W) log (1/W) = log W. @)

The measure of FSC, therefore, reduces to

C =log (W) - HX(1)). &)

If one wishes to take into account the effect of the genetic code on the various
a priori probabilities of generating the amino acids, then the probability of
producing each amino acid given the genetic code can be used to compute a
ground state that will be different from the null state, since all amino acids are
no longer equiprobable.

With the exception discussed shortly, it is usually the case, in measuring

FSC, that the variable ¢ is constant, in which case
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C=log (W) - HX). (6)

The value C is a measure of the FSC, or functional information, of any
sequence, including biopolymers. As shown above, it is a measure of the
change in uncertainty between the ground state and the functional state. This
difference in uncertainty is closely related, as is Eqn. (2), to Shannon
information and Shannon uncertainty respectively [14]. However, as
previously noted, Shannon information is not concerned with function directly.
FSC, on the other hand, is inseparable from function and can be regarded,
therefore, as a measure of functional information, a necessary concept in
biology [1, 2]. Since T is a measure of functional information, once T is
known, it can be substituted for /(E;) in Eqn. (1) and an estimate for the total
number of functional sequences M(E,) can be calculated. Also, the probability
of finding a functional sequence in a single search can be estimated by solving
Eqn (1) for M(E,)/W.

Change in FSC can be used as a method to quantify evolutionary
distance. The change can be between an existing or non-existing function f, to

a modified function f, between time 7, and ¢; described by
AT= AH (X (1), X5(0)). @)
The sequences corresponding to Xy, with initial function f, have two

components relative to that of X (with resulting mutated function f;). The

static component is that portion of the sequence that must remain within the
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permitted sequence variation of the original biosequence with function f;. The
mutating component is the portion of Xy, that must change to achieve either the
new function f5, where the new function is to be understood as either a new
level of efficiency for the existing function, or a novel function different from
fa- The mutating component can be assumed to be in the null state relative to
the modified function f,. To clarify, the mutating component, at the outset, is
non-functional with respect to the novel function, so the probability of any
particular amino acid at a site can be assumed to be equal to the probability of
any other amino acid at that site. Since the mutating component is the only part
that must change, the static component can be ignored provided the probability
of it remaining static is included between ¢ and #;. The static probability would
be assessed on the basis of the total number of mutations required for the
mutating component to achieve functionality and the probability that none of
those mutations occur in the static portion. There may be other factors as well
in the computation of the static probability, which may also require inclusion

in the calculation of the static probability.

5. Application of FSC to protein sequences.

One application of FSC is to protein families and protein structural
domains. Measuring the FSC of a protein family can quantify the target size in
sequence space for that family or structural domain which, itself, quantifies the
degree of difficulty in locating any sequence at all that falls within that target
area defined by the same 3D structure or function.

A measure of the lower bound for the FSC of a protein is to assume that

each site is independent of all other sites in the sequence. This will yield an
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artificially low estimate as discussed shortly, and therefore gives a lower
bound. First, a sequence alignment for the protein family or domain being
investigated can be downloaded from a web database such as Pfam [12]. It is
assumed that the data contains functional sequences, including neutral but
functional mutations, with the non-functional sequences filtered out by natural
selection. The next step is to compute the functional uncertainty of each site in
the sequence. This is done by first calculating the probability of each amino
acid occurring at each site. For example, if there are 1000 sequences in the
alignment, and proline occurs a total of 235 times at a particular site, then the
probability of proline occurring at that site is .235. This is done for each of the
20 commonly occurring amino acids. The functional uncertainty of that site is
then computed using Eqn. (2) inputting the 20 amino acid probabilities for that
site (ignoring chirality and non-biological amino acids). The functional
uncertainty of the entire sequence is obtained by [15] summing all the values
obtained for the functional uncertainty of each site in the sequence. The FSC
of the protein is then computed using Eqn. (6).

It is much more likely to be the case, for most proteins, that certain sites
within the amino acid sequence are associated with other sites in the same
sequence, forming 2™, 3 and 4™ order associations containing one or more
amino acid patterns [16, 17], where a 2" order association is an association
between two sites, a 3™ order cluster is an association between three sites, and
so on. These associations can be detected through various pattern discovery
methods [18, 19, 20, 21]. Measure of FSC becomes more accurate when the
sequence of individual sites is transformed into a sequence of individual site

clusters. Within each site cluster, there may be one or more amino acid
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patterns. The transformation consists of replacing the sequence of sites with a
series of non-overlapping site clusters. The functional uncertainty of each site
cluster is obtained by observing the a posteriori probability from the data of
each amino acid pattern within the site cluster. To clarify, Eqn. (2) is applied to
each amino acid at one site with respect to what amino acids are associated
with it at the other sites in the cluster. The analysis, therefore, runs horizontal
across a two dimensional array containing the multiple sequence alignment,
where each row represents a different functional sequence and each column
represents an aligned site in the sequences representing a protein family. The
functional uncertainty of that site cluster is then computed using Eqn. (2),
inputting the probabilities of each of the observed amino acid patterns for each
site cluster. Next, the functional complexity of each cluster must be computed,
where the null state permits any possible amino acid pattern. For example, for
a 4™ order site cluster, there are a total of W= 20" possible patterns of amino
acids. The functional uncertainty of the null state will depend upon the order of
the cluster. The FSC of the site cluster is computed using Eqn. (6), but the
variable W represents the total number of possible amino acid patterns, rather
than the total number of possible sequences. The total FSC of the protein is
then the sum of the individual FSC values for each site cluster within the
sequence of sites. In summary, the primary difference between assuming site
independence and site inter-dependence is that FSC is computed using
probabilities of individual amino acids at individual sites in the case of site
independence, and using probabilities of individual patterns of amino acids
within clusters of interdependent sites in the case of site inter-dependence. In
both cases, equation (2) is used but the unit of data Xy changes depending upon

whether individual amino acids at individual sites are the focus (assuming site
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independence) or individual amino acid patterns within individual site clusters
are the focus (assuming site inter-dependencies).

To illustrate the improvement in the accuracy of measuring FSC when
site associations are taken into account, and to contrast the difference in
measured FSC between site independence and site inter-dependence, consider
a hypothetical 3" order site cluster. Assume each site in the cluster contains all
20 amino acids and each amino acid is observed to appear an equal number of
times in the 1000 sequence alignment. However, each amino acid in the first
site in the cluster is uniquely associated with a specific amino acid in the other
two sites. If we assume site independence, then since all 20 amino acids appear
an equal number of times in all three sites, the site cluster appears to be in the
null state and the FSC of the site cluster is 0, since there is no difference
between the null state and the functional state in this particular case. The
observed amino acid patterns, however, indicate that there are only a total of
20 aa patterns in the site cluster out of a total possible 20° patterns. Since each
pattern occurs an equal number of times within the 1000-sequence alignment,
the probability of each pattern is .05. Using Eqn. (2), the functional uncertainty
of the site cluster is 1.30. The functional uncertainty of the null state is log
(20) or 3.90. The FSC of the cluster, therefore, is 2.60, significantly higher
than the lower bound of 0 in this hypothetical case. In reality, there may be
fewer patterns per site cluster, some patterns may not be visible due to
incomplete data, and the patterns are unlikely to occur with equal probability.
Nevertheless, it should be clear as to the importance of considering
interdependencies between sites when computing FSC. For the purpose of this

paper, however, we shall assume the simplest case of site independence.
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Using the site independent assumption and the method described above,
the lower bound for the FSC of various proteins can be obtained, with results
shown in Table 1. The proteins in Table 1 were chosen because all of them are
universal proteins found throughout biological life. Additional results have
been published by Durston ez al. [22]. Results in Table (1) are slightly
different from those published earlier due, primarily, to using the genetic code

constraints as the ground state, rather than the null state as published earlier.

Table 1: FSC Results for Four Universal Protein Families using the Genetic
Code frequencies as the ground state
Protein sites |Number of| FSC | Fits | Probability of |Estimate for
Family unique | (Fits) | per locating a upper limit
sequences site functional of functional
in data sequence ina | sequences
single search M(E))
for same-
length
sequence
space
Ribosomal 122 1774 346 | 2.8 10" 107
S12
Ribosomal 149 535 359 | 24 10" 107
S7
Ribosomal 211 2469 465 | 2.2 10" 10
S2
RecA 320 4301 976 | 3.0 107 10
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Table (1) shows lower bound of FSC since we are ignoring any additional
constraints imposed by other sites in the sequence. The probability of locating
a functional sequence in a single search is derived from the FSC of the protein
family. Once we have solved for C we can then solve for M(E,)/W using Eqn
(1). This will be an upper probability limit due to the fact that we are assuming
no interdependencies between sites. Site interdependencies will introduce
additional constraints which will reduce the number of possible functional
sequences, as illustrated earlier in this section (5). Thus, assuming site
independence gives an upper limit for the number of functional sequences
M(E,) and, therefore, an upper limit for the probability M(E\)/W of locating a
functional sequence in a single search. It should also be noted that W is a lower
limit since, as noted earlier, W = m" where, for proteins, m = 20 and n = the
length of the sequence, the total sequence space is radically reduced to just n-
aa sequence space. Realistically, a search of sequence space is not limited to
just the length of the sequences in the protein family being analyzed.
Therefore, sequence space target size shown in Table 1 is only for the
sequence space for the same length protein.

If all of amino acid sequence space is used for even just up to 300-aa
sequence space, the probability of locating a functional sequence for a given
protein family would be many orders of magnitude smaller, since W would be
many orders of magnitude larger. In summary, if site independence is
assumed, and given the artificially low value of ¥, the value of FSC calculated
this way is artificially low and can safely be taken to be a lower bound.
Similarly, the probability of locating a functional sequence within a protein
family in sequence space is likely to be much smaller by numerous orders of

magnitude. This, coupled with the results shown in Table 1, underscores the
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almost infinitesimal size of functional sequence space relative to the size of the

entire sequence space for a given number of sites.

6. Relationship between RSC, OSC and FSC

Preliminary attempts have already been made to model the relationship
between RSC, OSC and FSC [3, 22]. The following model improves upon
those earlier attempts and is consistent with the method to measure FSC
discussed earlier. It may not be the only way to model this relationship, but
may provide a helpful model for the comparison of RSC, OSC and FSC.
Figure 1 models one approach to describing the relationship between the three
types of sequence complexity, portrayed as a three dimensional coordinate
system, with the X coordinate representing RSC, the Y coordinate representing

OSC, and the Z coordinate representing FSC.
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1a y 2-D Complexity space 1b 3-D Complexity space
VA

»

hypothetical
protein
family

RSC

Figure 1: Relationship between RSC, OSC and FSC. In 1a, 2-D
complexity space, composed of RSC and OSC, is inadequate to distinguish
FSC from RSC and OSC. A third coordinate is necessary, representing the
information required to achieve the function, which is a function of
probability from Eqn. (1). In 1b, the uneven surface of the XY plane
represents low-level, statistically insignificant FSC that can stochastically
occur without any controls imposed on the generated sequences. The FSC of
a hypothetical protein family can clearly be distinguished from RSC and
OSC in this 3-D coordinate model of complexity space.

A very short repeating sequence would be an example of OSC and
would be placed closer to the axis than a longer repeating sequence. Similarly,
a short random sequence could be an example of RSC and would be placed
closer to the axis than a longer random sequence. A sequence consisting of

repeating random sequences would have components of both RSC and OSC
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and could be placed somewhere on the XY plane, as would any non-functional
sequence that contained a mix of RSC and OSC.

For both OSC and RSC, the magnitude of their values is contingent upon
the sequence length. This is not the case for FSC. From Eqn. (2), the
magnitude of FSC is a function of the probability of finding a functional
sequence in a single blind search, also a function of target size in sequence
space, as has already been discussed. That probability is determined, in the
simplest case, by the ratio of the number of sequences that will produce the
function, M(E,), over the total number of sequence options W, both functional
and non-functional, as used in Eqn. (1). This ratio also represents the target
size, in sequence space, of the region that produces the function.

The location of FSC relative to the horizontal XY plane is plotted
according to the combination of RSC and OSC within the sequences when the
sequence, or set of sequences in the case of a protein family, is assumed to be
non-functional. The size of the FSC of a protein family, along the Z-
coordinate, allows for some variation of efficiency about the optimum value.
From the examples in Table 1 and from Eqn. (2) and (6) it can be seen that the
greater the FSC, the less probable a functional sequence becomes which,
therefore, results in a greater quantum jump from the horizontal X-Y plane.
This leads to the conundrum of how functional biopolymeric sequences such
as protein families can be discovered in the overall sequence space when,
necessarily, the higher the FSC, the less probable it becomes and, from Table

1, those probabilities are quite miniscule.

7. Biological FSC is unique in nature
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Although FSC is found within human languages and computer code, the
only known occurrence in nature occurs within biopolymers such as DNA,
RNA and proteins [3]. To appreciate the oddity of FSC in biopolymers, it is
essential to understand the distinction between constraints and controls.
Constraints are imposed upon any physical system found in nature by the
deterministic laws of nature, relevant initial conditions, and probabilistic
limitations to possible outcomes [23]. The deterministic outcome of constraints
is often referred to as necessity. Deterministic necessity steers a process toward
repeatability and order. Thus, sequences determined by the constraints thus
described will be highly ordered, demonstrating high OSC. The relaxation of
constraints, or necessity, permits greater degrees of freedom in the outcome
and is often referred to as chance. Chance, itself, is not causal but is permitted
by the relaxation of the constraints imposed by the laws of nature, initial
conditions, and probabilistic boundaries [24]. Chance, or the relaxation of
necessity, in sequence formation, permits RSC. Thus, natural processes can be
summarized by chance and necessity, the interplay of which produces OSC
and RSC. Natural processes, therefore, are known to be limited to producing
effects that lay in the XY/OSC-RSC plane in Figure 1. These effects determine
the ground state of any sequence, as described earlier. FSC, however, requires
a deviation from the ground state to achieve a particular function, as shown in
Eqn. (3). To clarify, FSC requires a deviation from the normal results of
natural processes operating in the XY plane (Figure 1). Small deviations from
the ground state are statistically possible, such that low-level FSC can be
achieved for very low-level functions, but the greater the FSC value ¢ required
by a particular function, the greater the deviation from the ground state. FSC,

therefore, represents an anomaly within nature, a deviation from mere chance
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and necessity. To clarify, FSC represents something that one would not predict
given the natural processes of OSC and RSC; it is improbable and the higher
the FSC, the more improbable it becomes as shown experimentally (column 6,
Table 1). Biological proteins require very high levels of FSC, as illustrated in
Table 1. For this reason, chance and necessity define the ground state of a
sequence, but are inadequate to produce the kind of cybernetic algorithms
found within the genomes of life [25].

The cybernetic requirements of biological life, encoded within
biopolymers such as DNA, require the addition of controls which can steer the
physical system away from the ground state to produce the desired function
[23]. Each step, or site, in a sequence represents a decision node that
determines the course of physicodynamic events in such a way that the
physical system can be steered in the direction of the desired function.
Computer code, for example, is an illustration of FSC in the encoding of
prescriptive information, using a physical medium, to steer the physical system
(a computer) such that a desired function is achieved. FSC is only known to be
achieved by encoding formal choices into a physical information storage
medium, such as DNA through a series of volitional decisions at each
configurable switch symbol. The large deviation from the ground state
determined by constraints is an indicator that it has been achieved through the
application of controls that arise out of choice contingency or volition. It is
easy to understand why human languages and designed computer code exhibit
such a high degree of FSC, since human intelligence provides the necessary
volitional agency required to select the proper switch configurations. The high
level FSC observed in biopolymers, however, successfully locates miniscule

areas of sequence space, as shown in column 6 of Table 1, requiring very tight
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controls. The results are high-FSC sequences representing massive deviations
from the ground state, deviations from the normal OSC-RSC of natural
processes. These examples of FSC, therefore, represent something that is
unique in nature. In other words, FSC breaks out of the XY plane in Figure 1
and into the Z dimension, deviating from natural processes of chance and

necessity that produce OSC and RSC.

8. The effect of mutations on FSC

The set of all sequences M(E,) that can perform a given function forms
the functional sequence space within the larger sequence space. For example,
Table 1 shows that the universal protein RecA has an estimated number of
10'** functional sequences within the larger 320-site sequence space, assuming
site independence. Site interdependency will substantially reduce this number,
as discussed earlier, but site independence will be assumed here for the sake of
simplicity. These 10'** RecA sequences form the functional sequence space for
RecA. Mutations that merely move the sequence from one area of functional
sequence space to another area of functional space will have little effect on the
FSC of the sequence. As discussed in Section 5, FSC is not measured on the
basis of a single sequence, but on a large set of functional sequences. Some
sequences, however, may be more efficient than others, as pointed out by
Hazen et al. [2]. If that is the case, then there can be some variation in the
value C for the FSC of a protein family. This is represented in Figure 1 as a
range of Z-values in the FSC of the hypothetical protein family shown in the
model. Therefore, mutations within functional sequence space may reduce

FSC as they become functionally less efficient until the mutations reduce the
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functionality of the sequence below the threshold required by biological life
[2]. At that point, any further change can be measured using Eqn. (7) relative
to the original function.

With regard to a protein with function f, evolving into a completely novel
structure with novel function f,, once a sequence has mutated out of £,
sequence space, the evolutionary path may have to traverse a region of non-
folding, non-functional sequence space. As pointed out by Blanco, natural
selection is of no use in navigating non-functional sequence space, so further
mutations will be unguided and take the form of a random walk [26]. Given
the results shown in Table 1, and given experimental evidence [27], the area of
functional sequence space for stable, folding functional proteins may be so
miniscule, that attempting to locate them without the aid of controls may
exceed an objective universal plausibility cut-off [28]. Mutations that occur
within functional sequence space can move a functional sequence to an area
within functional sequence space that may enhance fitness. However, given the
miniscule size of functional sequence space, as suggested by Table 1, an
obvious prediction is that an accumulation of mutations will tend to be
harmful.

Since natural constraints tend to produce repeatable results, non-random
mutations imposed by natural constraints will tend to move the sequence in the
direction of order, or OSC. As shown in Figure 1, this constitutes movement in
the XY plane which can move the sequence outside the area of functionality
shown in Figure 1b. Thus, as can be seen in Figure 1b, both a limited amount
of random and non-random mutations can be permitted provided the sequence
remains within the functional area. But both random and non-random

mutations can render the sequence non-functional, collapsing the Z component
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to zero, if the mutations move the sequences outside of the small functional

sphere representing a hypothetical protein family.

9. Conclusion

FSC can be measured by extending Shannon uncertainty to include the
joint variables of data and function. This measure can provide an estimate of
the variability and hence the size of the functional sequence space for a
specific functional protein. It also can measure change in a sequence due to
mutation relative to the required functionality. The information calculated
from an observed sequence ensemble constrained by the specified functionality
then reflects the underlying sub-molecular information structure that could be
used to reconstruct the structural or functional properties of the molecule. FSC

thus provides a foundational measure that can form the basis for more detailed

analysis.

References

1. Szostak, J.W. 2003, Functional information: Molecular messages, Nature, 423, (6941) 689.

2 Hazen, R.M.; Griffin, P.L.; Carothers, J.M.; Szostak, J.W. 2007, Functional information and the emergence
of biocomplexity, Proc Natl Acad Sci U S A, 104 Suppl 1, 8574-81.

3. Abel, D.L.; Trevors, J.T. 2005, Three subsets of sequence complexity and their relevance to biopolymeric
information, Theor Biol Med Model, 2, 29.

4. Ferris, J.P. 2002, Montmorillonite catalysis of 30-50 mer oligonucleotides: laboratory demonstration of
potential steps in the origin of the RNA world, Orig Life Evol Biosph, 32, (4) 311-32.

5. Abel, D.L.; Trevors, J.T. 2006, Self-Organization vs. Self-Ordering events in life-origin models., Physics
of Life Reviews, 3, 211-228.

6. Gammerman, A.; Vovk, V. 1999, Kolmogorov complextiy: sources, theory and applications, The
Computer Journal, 42, 252-255.

7. Shannon, C. 1948, Part I and II: A mathematical theory of communication, The Bell System Technical
Journal, XXVII, 379-423.

8. Karp, P. 2000, An ontology for biological function based on molecular interactions, Bioinformatics
Ontology, 16, (3) 269-285.

9. Costanzo, G.; Pino, S.; Ciciriello, F.; Di Mauro, E. 2009, Generation of long RNA chains in water, J Biol

Chem, 284, (48) 33206-16.




“Functional Sequence Complexity in Biopolymers,” Kirk Durston & David Chiu
————————————————————— ]

10. Durston, K.K. 2010, Statistical analyses of site variability and site inter-dependencies in sub-molecular
hierarchical protein structuring. University of Guelph, Guelph.

11. Durston, K.K.; Chiu, D.K.Y. 2005, A functional entropy model for biological sequences, Dynamics of
Continuous, Discrete & Impulsive Systems, Series B.

12. Finn, R.D.; Tate, J.; Mistry, J.; Coggill, P.C.; Sammut, S.J.; Hotz, H.R.; Ceric, G.; Forslund, K.; Eddy,

S.R.; Sonnhammer, E.L.; Bateman, A. 2008, The Pfam protein families database, Nucleic Acids Res, 36,
(Database issue) D281-8.

13. Weiss, O.; Jimenez-Montano, M.A.; Herzel, H. 2000, Information content of protein sequences, J Theor
Biol, 206, (3) 379-86.

14. Schneider, T.D. 2006, Claude Shannon: biologist. The founder of information theory used biology to
formulate the channel capacity, IEEE Eng Med Biol Mag, 25, (1) 30-3.

15. Wong, A.K.; Liu, T.S.; Wang, C.C. 1976, Statistical analysis of residue variability in cytochrome c, J Mol
Biol, 102, (2) 287-95.

16. Lui, T.W.H.; Chiu, D.K.Y. 2009, Multi-value association patterns and data mining. In Foundations of

Compuational Intelligence, Abraham, A.; Hassanien, A. E.; de Carvalho, A. P.Snael, V., Eds. Springer-
Verlag: Vol. 6: Data Mining.

17. Lui, T.W.H.; Chiu, D.K.Y. 2010, Associative classification using patterns from nested granules,
International Journal of Granular Computing, Rough Sets and Intelligent Systems, 1, (4) 393-406.

18. Wong, A.K.C.; Chiu, D.K.Y.; Huang, W. 2001, A discrete-valued clustering algorithm with applications to
biomolecular data, Information Sciences, 139, 97-112.

19. Au, W.H.; Chan, K.C.; Wong, A.K.; Wang, Y. 2005, Attribute clustering for grouping, selection, and
classification of gene expression data, IEEE/ACM Trans Comput Biol Bioinform, 2, (2) 83-101.

20. Chiu, D.K.; Wang, Y. 2006, Multipattern consensus regions in multiple aligned protein sequences and their
segmentation, EURASIP J Bioinform Syst Biol, 35809.

21. Chiu, D.K.Y; Lui, T.W.H. 2002, Integrated use of multiple interdependent patterns for biomolecular
sequence analysis, International Journal of Fuzzy Systems, 4, (3) 766-775.

22. Durston, K.K.; Chiu, D.K.; Abel, D.L.; Trevors, J.T. 2007, Measuring the functional sequence complexity
of proteins, Theor Biol Med Model, 4, 47.

23. Abel, D.L. 2010, Constraints vs Controls, The Open Cybernetics & Systemics Journal, 4, 14-17.

24. Pearle, J. 2000, Causation. Cambridge University Press: Cambridge.

25. Trevors, J.T.; Abel, D.L. 2004, Chance and necessity do not explain the origin of life, Cell Biol Int, 28,
(11) 729-39.

26. Blanco, F.J.; Angrand, I.; Serrano, L. 1999, Exploring the conformational properties of the sequence space
between two proteins with different folds: an experimental study, J Mol Biol, 285, (2) 741-53.

27. Axe, D.D. 2004, Estimating the prevalence of protein sequences adopting functional enzyme folds, J Mol
Biol, 341, (5) 1295-315.

28. Abel, D.L. 2009, The Universal Plausibility Metric (UPM) & Principle (UPP), Theor Biol Med Model, 6,
27.




