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ABSTRACT.  It is generally recognized that biopolymers such as DNA, RNA and 

proteins demonstrate a form of sequence complexity. Recent work has provided a 

more detailed insight into biopolymeric complexity by introducing three types of 

sequence complexity, Random Sequence Complexity (RSC), Ordered Sequence 

Complexity (OSC) and Functional Sequence Complexity (FSC). The primary feature 

of FSC that distinguishes it from RSC and OSC, is the imposition of functional 

controls upon the sequence. In this paper, we propose that it can be measured using an 

extended form of Shannon uncertainty that includes a variable of functionality. 

Clearly, FSC can be found in human languages and carefully designed computer code, 

but the measure we propose in this paper reveals that it is also found in biopolymers. 

In the case of proteins, the measure of FSC provides an estimate for the target size of 

a protein family in the amino acid sequence space, revealing that functional sequences 

occupy an extremely small fraction of sequence space. Due to the miniscule size of 

functional sequence space for a given protein family, as mutations accumulate there 

will be an increasing likelihood of moving the mutated sequence outside that space, 

with a corresponding deleterious effect on FSC. 
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Introduction: sequence complexity in biopolymers 

 
 It has recently been pointed out that traditional notions of complexity are 

inadequate when applied to biosequences  [1, 2]. For example, characterizing 

biosequence complexity in terms of algorithmic complexity fails to account for 

the redundancy found in numerous different sequences even when they have 

the same function  [1]. Functional controls imposed upon a biological 

sequence are critical for maintaining specific functions of the sequence within 

the cell and, ultimately, for the existence of life. A more rigorous formulation 

for complexity in biosequences that incorporates functionality is therefore 

required. Abel and Trevors have defined three types of sequence complexity, 

only one of which accounts for functional controls imposed upon biosequences 

such as DNA, RNA and proteins. We will discuss these three types of 

complexity within the context of biopolymers, with a special focus on that 

form of sequence complexity that incorporates functionality.  

 

1. Random sequence complexity 

 

 Abel and Trevors have defined Random Sequence Complexity (RSC) as 

a linear string of stochastically linked units, the sequencing of which is 

dynamically inert, statistically unweighted, and is unchosen by agents; a 

random sequence of independent and equiprobable unit occurrence  [3]. 

Implicitly, four components contribute to RSC. First, the sequence is 

composed of sites, or loci. Second, there is the importance of the symbols that 

could occupy each site in the sequence. Third, there is a complete absence of 
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constraints and controls on these symbols, statistically making all options 

equiprobable. Finally, the value of the symbol at each site must be independent 

of the values at any other site, such that no site is constrained by any other site 

in the sequence. An example of RSC can be found in atactic polystyrene, 

where the orientation of the side chains at each site appears to be completely 

unconstrained. In summary, if no agent or law of nature controls or constrains 

the outcomes of any site in a sequence, then they are presumed to be 

equiprobable, and the complexity of the sequence is characterized as RSC.  

2. Ordered sequence complexity 

 

 Ordered Sequence Complexity (OSC) is defined as a linear string of 

linked units, the sequencing of which is patterned either by the natural 

regularities described by physical laws (necessity) or by statistically weighted 

means (e.g., unequal availability of units), but which is not patterned by 

deliberate choice contingency (agency)  [3]. Examples of OSC are repeating 

patterns arising out of chaotic interactions or a string of repeating alphabet 

characters such as TGTGTGTGTGTG ... In nature, OSC is presumed to occur 

when laws of nature impose such tight constraints that there is no possibility of 

variation. In this case, repeatable, highly constrained sequences are produced 

that cannot, therefore, incorporate new functional inputs as functional 

information. An example of OSC is the highly ordered and repeating sequence 

obtained through the formation of polyadenosine absorbed onto the surface of 

montmorillonite clay [4]. 
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3. Functional sequence complexity 

 

 Given the limitations discussed above, neither RSC, OSC, nor a 

combination of the two, are capable of producing significant levels of FSC 

since neither, by definition, are controlled by functionality [5]. Szostak [1] has 

further pointed out that, traditionally, neither algorithmic complexity  [6] nor 

Shannon’s measure of uncertainty [7] is adequate for biopolymers. Functional 

Sequence Complexity (FSC) is therefore defined as a linear, digital, 

cybernetic string of symbols representing syntactic, semantic and pragmatic 

prescription; each successive symbol in the string is a representation of a 

decision-node configurable switch-setting---a specific selection for function 

[3]. Volitional agency (control) is implicitly required to properly set each 

configurable-switch-position symbol to achieve functionality. Examples of 

FSC are said to occur in well-designed computer code and, naturally, in human 

languages. For biopolymers, functionality can be a result of structural 

requirements of protein families [17], cellular processes, or specific 

biochemical reactions [8]. Furthermore, biological functions can be nested in a 

hierarchical manner from the sub-molecular domain structure necessary for the 

3D structure of an enzyme, all the way up to the global function of entire 

species of organisms. Comparing the differences between OSC and RSC on 

the one hand, and FSC on the other, it is the requirement of functionality that 

is the distinguishing feature between them.  

 Recent advances in the synthesis of RNA chains in water are 

encouraging so far as providing a storage medium for prescriptive information 
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and FSC [9]. However, the much greater challenge of encoding FSC within 

RNA remains. If a RNA sequence is highly ordered, it will tend toward OSC. 

If the highly ordered sequence can mutate, it will tend toward RSC over time. 

To become functional, controls will be required to properly configure each 

switch-setting (nucleotide) to select for function. 

 

4. Measuring FSC 

 

 The definition of FSC supplied above is essentially a definition of 

functional information. Shannon uncertainty is well known as a method to 

measure variability in data and as a measurement of information. 

Unfortunately, Shannon uncertainty makes no distinction between functional 

and nonfunctional variability and complexity, as Szostak has pointed out  [1]. 

Hazen, Szostak et al. have advanced an equation for the measurement of 

functional information as follows: 

 

I(Ex) = - log2[M(Ex)/W]     (1) 

 

where Ex is the degree of function x (a measure of a sequence’s functionality 

with regard to function x), M(Ex) is the number of different sequences or 

configurations that meet or exceed Ex, and W is the total number of possible 

sequences or configurations. (Note that Hazen et al. use the notation N instead 

of W, but W is used here to be consistent with the notations and equations that 

follow.) Here we present an alternate method to measure functional 

information where an estimate of the probability distribution may be required. 

For example, in the case of a protein family the data may provide only the 
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probability of each amino acid at each site, but not the total number of 

functional sequences. Our proposed method allows uncertainty to be managed 

when sequences with functionality are not exactly known. It also provides 

further analyses making use of the sequence distribution obtained  [10]. 

Shannon uncertainty can be modified as a joint measure to analyze 

available data when the data is known to represent a particular function and is 

entered as input. This modified form of Shannon uncertainty we call functional 

uncertainty (Hf) [11] and is defined as: 

 

 H(Xf(t)) = - ∑ P(Xf(t)) logP(Xf(t))    (2) 

 

where Xf denotes the data specified with known functionality and t represents 

time. In the case of a protein family, the data Xf  is in the form of a multiple 

sequence alignment specified by their family label when downloaded from 

Pfam  [12]. When the dataset, composed of a multiple sequence alignment, is 

corrupted either by irrelevant sequences or irrelevant amino acids within an 

included sequence, there are methods such as ‘noise cleaning’ to address that 

problem. P(Xf) is the a posteriori probability of the data with the given 

functionality F = f,  or P(Xf) = P(X | f). An explanation as to how this is 

calculated for proteins is given in section (5). 

 It may be useful to measure the change in H(Xf) if certain mutations, 

insertions or deletions occur between time i and time j resulting in a loss, gain, 

or change in function. For this reason the time variable t is included in Eqn (2). 

For example, for a protein family that shares a common 3D structure that 

performs a known, specific functionality task f, Xf represents the dataset X of 

known sequences that satisfy the functionality f. Changes in sequence due to 
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mutations may introduce a change in the specified functionality between time i 

and time j. (We are currently developing methods to address the dataset when 

sub-functionality is considered, such as a portion of the dataset coding 

structural domains within the larger structure of a protein. The sub-

functionality in this case could be the function of contributing a critical 

structural component within the larger 3D structure that defines the larger 

biological function. In this view, functionality can form a nested hierarchy, 

composed of lower levels of different functionalities contributing to higher 

levels of global functionality. 

 There are three states of uncertainty to consider when measuring 

functional complexity. The ground state g is the state of greatest uncertainty 

permitted by the constraints imposed by the physical system when no 

biological function is required or present. Since the physical system may 

impose constraints on what type of sequences are permitted, it may be the case 

that not all sequences are equally probable. A special case of the ground state 

occurs when the physical system imposes no constraints on sequencing 

whatsoever, with the result that all possible sequences are equiprobable. This 

special case is classified as the null state ø. The third state is that which 

produces the function under investigation, denoted as the functional state f.  

 The measure of FSC, denoted as ζ, is the change in functional 

uncertainty between the ground state g and the functional state f, or 

 

ζ = ∆ H (Xg(ti), Xf(tj)) .     (3) 
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For proteins, the data suggests that actual dipeptide frequencies and single 

nucleotide frequencies for proteins are closer to random than ordered [13]. For 

this reason, the ground state g for biopolymers can be approximated by the null 

state ø. If we let the number of all possible sequences be represented by W and 

the length of each sequence by N and the number of options at each site in the 

sequence be denoted by m, then W = mN. For example, for a 300 amino acid 

(aa) protein, if we assume 20 aa options per site, then W= 20300. If the FSC if a 

single column within a multiple sequence alignment is being measured, then N 

= 1 and W = m. If the FSC of an interdependent cluster of sites is being 

measured, then N = the number of sites in the cluster. Since for the null state, 

all options are equally probable, P(Xø(ti)) = 1/W and 

 

 H(Xø(ti))= - ∑ (1/W) log (1/W) = log W.   (4) 

 

The measure of FSC, therefore, reduces to  

 

ζ = log (W) - H(Xf(ti)).       (5) 

 

If one wishes to take into account the effect of the genetic code on the various 

a priori probabilities of generating the amino acids, then the probability of 

producing each amino acid given the genetic code can be used to compute a 

ground state that will be different from the null state, since all amino acids are 

no longer equiprobable.  

 With the exception discussed shortly, it is usually the case, in measuring 

FSC, that the variable t is constant, in which case 
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ζ = log (W) - H(Xf).       (6) 

 

The value ζ is a measure of the FSC, or functional information, of any 

sequence, including biopolymers. As shown above, it is a measure of the 

change in uncertainty between the ground state and the functional state. This 

difference in uncertainty is closely related, as is Eqn. (2), to Shannon 

information and Shannon uncertainty respectively [14]. However, as 

previously noted, Shannon information is not concerned with function directly. 

FSC, on the other hand, is inseparable from function and can be regarded, 

therefore, as a measure of functional information, a necessary concept in 

biology [1, 2]. Since ζ is a measure of functional information, once ζ is 

known, it can be substituted for I(Ex)  in Eqn. (1) and an estimate for the total 

number of functional sequences M(Ex) can be calculated. Also, the probability 

of finding a functional sequence in a single search can be estimated by solving 

Eqn (1) for M(Ex)/W. 

 Change in FSC can be used as a method to quantify evolutionary 

distance. The change can be between an existing or non-existing function fa to 

a modified function fb between time ti and tj described by 

 

∆ ζ = ∆ H (Xfa(ti), Xfb(tj)).      (7) 

 

The sequences corresponding to Xfa with initial function fa have two 

components relative to that of Xfb (with resulting mutated function fb). The 

static component is that portion of the sequence that must remain within the 
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permitted sequence variation of the original biosequence with function fa. The 

mutating component is the portion of Xfa that must change to achieve either the 

new function fb, where the new function is to be understood as either a new 

level of efficiency for the existing function, or a novel function different from 

fa. The mutating component can be assumed to be in the null state relative to 

the modified function fb. To clarify, the mutating component, at the outset, is 

non-functional with respect to the novel function, so the probability of any 

particular amino acid at a site can be assumed to be equal to the probability of 

any other amino acid at that site. Since the mutating component is the only part 

that must change, the static component can be ignored provided the probability 

of it remaining static is included between ti and tj. The static probability would 

be assessed on the basis of the total number of mutations required for the 

mutating component to achieve functionality and the probability that none of 

those mutations occur in the static portion. There may be other factors as well 

in the computation of the static probability, which may also require inclusion 

in the calculation of the static probability. 

 

5. Application of FSC to protein sequences. 

 

 One application of FSC is to protein families and protein structural 

domains. Measuring the FSC of a protein family can quantify the target size in 

sequence space for that family or structural domain which, itself, quantifies the 

degree of difficulty in locating any sequence at all that falls within that target 

area defined by the same 3D structure or function. 

  A measure of the lower bound for the FSC of a protein is to assume that 

each site is independent of all other sites in the sequence. This will yield an 
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artificially low estimate as discussed shortly, and therefore gives a lower 

bound. First, a sequence alignment for the protein family or domain being 

investigated can be downloaded from a web database such as Pfam [12]. It is 

assumed that the data contains functional sequences, including neutral but 

functional mutations, with the non-functional sequences filtered out by natural 

selection. The next step is to compute the functional uncertainty of each site in 

the sequence. This is done by first calculating the probability of each amino 

acid occurring at each site. For example, if there are 1000 sequences in the 

alignment, and proline occurs a total of 235 times at a particular site, then the 

probability of proline occurring at that site is .235. This is done for each of the 

20 commonly occurring amino acids. The functional uncertainty of that site is 

then computed using Eqn. (2) inputting the 20 amino acid probabilities for that 

site (ignoring chirality and non-biological amino acids). The functional 

uncertainty of the entire sequence is obtained by  [15] summing all the values 

obtained for the functional uncertainty of each site in the sequence. The FSC 

of the protein is then computed using Eqn. (6). 

 It is much more likely to be the case, for most proteins, that certain sites 

within the amino acid sequence are associated with other sites in the same 

sequence, forming 2nd, 3rd and 4th order associations containing one or more 

amino acid patterns [16, 17], where a 2nd order association is an association 

between two sites, a 3rd order cluster is an association between three sites, and 

so on. These associations can be detected through various pattern discovery 

methods [18, 19, 20, 21]. Measure of FSC becomes more accurate when the 

sequence of individual sites is transformed into a sequence of individual site 

clusters. Within each site cluster, there may be one or more amino acid 
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patterns. The transformation consists of replacing the sequence of sites with a 

series of non-overlapping site clusters. The functional uncertainty of each site 

cluster is obtained by observing the a posteriori probability from the data of 

each amino acid pattern within the site cluster. To clarify, Eqn. (2) is applied to 

each amino acid at one site with respect to what amino acids are associated 

with it at the other sites in the cluster. The analysis, therefore, runs horizontal 

across a two dimensional array containing the multiple sequence alignment, 

where each row represents a different functional sequence and each column 

represents an aligned site in the sequences representing a protein family. The 

functional uncertainty of that site cluster is then computed using Eqn. (2), 

inputting the probabilities of each of the observed amino acid patterns for each 

site cluster. Next, the functional complexity of each cluster must be computed, 

where the null state permits any possible amino acid pattern. For example, for 

a 4th order site cluster, there are a total of W = 204 possible patterns of amino 

acids. The functional uncertainty of the null state will depend upon the order of 

the cluster. The FSC of the site cluster is computed using Eqn. (6), but the 

variable W represents the total number of possible amino acid patterns, rather 

than the total number of possible sequences.  The total FSC of the protein is 

then the sum of the individual FSC values for each site cluster within the 

sequence of sites. In summary, the primary difference between assuming site 

independence and site inter-dependence is that FSC is computed using 

probabilities of individual amino acids at individual sites in the case of site 

independence, and using probabilities of individual patterns of amino acids 

within clusters of interdependent sites in the case of site inter-dependence. In 

both cases, equation (2) is used but the unit of data Xf changes depending upon 

whether individual amino acids at individual sites are the focus (assuming site 



 
	
  

“Functional	
  Sequence	
  Complexity	
  in	
  Biopolymers,”	
  	
  Kirk	
  Durston	
  &	
  David	
  Chiu	
  

 
 

 159 

independence) or individual amino acid patterns within individual site clusters 

are the focus (assuming site inter-dependencies). 

To illustrate the improvement in the accuracy of measuring FSC when 

site associations are taken into account, and to contrast the difference in 

measured FSC between site independence and site inter-dependence, consider 

a hypothetical 3rd order site cluster. Assume each site in the cluster contains all 

20 amino acids and each amino acid is observed to appear an equal number of 

times in the 1000 sequence alignment. However, each amino acid in the first 

site in the cluster is uniquely associated with a specific amino acid in the other 

two sites. If we assume site independence, then since all 20 amino acids appear 

an equal number of times in all three sites, the site cluster appears to be in the 

null state and the FSC of the site cluster is 0, since there is no difference 

between the null state and the functional state in this particular case. The 

observed amino acid patterns, however, indicate that there are only a total of 

20 aa patterns in the site cluster out of a total possible 203 patterns. Since each 

pattern occurs an equal number of times within the 1000-sequence alignment, 

the probability of each pattern is .05. Using Eqn. (2), the functional uncertainty 

of the site cluster is 1.30. The functional uncertainty of the null state is log 

(203) or 3.90. The FSC of the cluster, therefore, is 2.60, significantly higher 

than the lower bound of 0 in this hypothetical case. In reality, there may be 

fewer patterns per site cluster, some patterns may not be visible due to 

incomplete data, and the patterns are unlikely to occur with equal probability. 

Nevertheless, it should be clear as to the importance of considering 

interdependencies between sites when computing FSC. For the purpose of this 

paper, however, we shall assume the simplest case of site independence. 
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 Using the site independent assumption and the method described above, 

the lower bound for the FSC of various proteins can be obtained, with results 

shown in Table 1. The proteins in Table 1 were chosen because all of them are 

universal proteins found throughout biological life. Additional results have 

been published by Durston et al.  [22].  Results in Table (1) are slightly 

different from those published earlier due, primarily, to using the genetic code 

constraints as the ground state, rather than the null state as published earlier.  

 
Table 1: FSC Results for Four Universal Protein Families using the Genetic 

Code frequencies as the ground state 

Protein 

Family 

sites Number of 

unique 

sequences 

in data 

FSC 

(Fits) 

Fits 

per 

site 

Probability of 

locating a 

functional 

sequence in a 

single search 

for same-
length 

sequence 

space 

Estimate for 

upper limit 

of functional 

sequences 

M(Ex) 

Ribosomal 

S12  

122 1774 346 2.8 10-104 1055 

Ribosomal 

S7  

149 535 359 2.4 10-108 1093 

Ribosomal 

S2  

211 2469 465 2.2 10-140 10135 

RecA  320 4301 976 3.0 10-294 10122 
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Table (1) shows lower bound of FSC since we are ignoring any additional 

constraints imposed by other sites in the sequence. The probability of locating 

a functional sequence in a single search is derived from the FSC of the protein 

family. Once we have solved for ζ we can then solve for M(Ex)/W using Eqn 

(1). This will be an upper probability limit due to the fact that we are assuming 

no interdependencies between sites. Site interdependencies will introduce 

additional constraints which will reduce the number of possible functional 

sequences, as illustrated earlier in this section (5). Thus, assuming site 

independence gives an upper limit for the number of functional sequences 

M(Ex) and, therefore, an upper limit for the probability M(Ex)/W of locating a 

functional sequence in a single search. It should also be noted that W is a lower 

limit since, as noted earlier, W = mn where, for proteins, m = 20 and n = the 

length of the sequence, the total sequence space is radically reduced to just n-

aa sequence space. Realistically, a search of sequence space is not limited to 

just the length of the sequences in the protein family being analyzed. 

Therefore, sequence space target size shown in Table 1 is only for the 

sequence space for the same length protein. 

 If all of amino acid sequence space is used for even just up to 300-aa 

sequence space, the probability of locating a functional sequence for a given 

protein family would be many orders of magnitude smaller, since W would be 

many orders of magnitude larger. In summary, if site independence is 

assumed, and given the artificially low value of W, the value of FSC calculated 

this way is artificially low and can safely be taken to be a lower bound. 

Similarly, the probability of locating a functional sequence within a protein 

family in sequence space is likely to be much smaller by numerous orders of 

magnitude. This, coupled with the results shown in Table 1, underscores the 
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almost infinitesimal size of functional sequence space relative to the size of the 

entire sequence space for a given number of sites. 

 

6. Relationship between RSC, OSC and FSC 

 

 Preliminary attempts have already been made to model the relationship 

between RSC, OSC and FSC [3, 22]. The following model improves upon 

those earlier attempts and is consistent with the method to measure FSC 

discussed earlier. It may not be the only way to model this relationship, but 

may provide a helpful model for the comparison of RSC, OSC and FSC. 

Figure 1 models one approach to describing the relationship between the three 

types of sequence complexity, portrayed as a three dimensional coordinate 

system, with the X coordinate representing RSC, the Y coordinate representing 

OSC, and the Z coordinate representing FSC.  
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  A very short repeating sequence would be an example of OSC and 

would be placed closer to the axis than a longer repeating sequence. Similarly, 

a short random sequence could be an example of RSC and would be placed 

closer to the axis than a longer random sequence. A sequence consisting of 

repeating random sequences would have components of both RSC and OSC 

Figure 1: Relationship between RSC, OSC and FSC. In 1a, 2-D 
complexity space, composed of RSC and OSC, is inadequate to distinguish 
FSC from RSC and OSC. A third coordinate is necessary, representing the 
information required to achieve the function, which is a function of 
probability from Eqn. (1). In 1b, the uneven surface of the XY plane 
represents low-level, statistically insignificant FSC that can stochastically 
occur without any controls imposed on the generated sequences. The FSC of 
a hypothetical protein family can clearly be distinguished from RSC and 
OSC in this 3-D coordinate model of complexity space. 
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and could be placed somewhere on the XY plane, as would any non-functional 

sequence that contained a mix of RSC and OSC.  

 For both OSC and RSC, the magnitude of their values is contingent upon 

the sequence length. This is not the case for FSC. From Eqn. (2), the 

magnitude of FSC is a function of the probability of finding a functional 

sequence in a single blind search, also a function of target size in sequence 

space, as has already been discussed. That probability is determined, in the 

simplest case, by the ratio of the number of sequences that will produce the 

function, M(Ex), over the total number of sequence options W, both functional 

and non-functional, as used in Eqn. (1). This ratio also represents the target 

size, in sequence space, of the region that produces the function. 

  The location of FSC relative to the horizontal XY plane is plotted 

according to the combination of RSC and OSC within the sequences when the 

sequence, or set of sequences in the case of a protein family, is assumed to be 

non-functional. The size of the FSC of a protein family, along the Z-

coordinate, allows for some variation of efficiency about the optimum value. 

From the examples in Table 1 and from Eqn. (2) and (6) it can be seen that the 

greater the FSC, the less probable a functional sequence becomes which, 

therefore, results in a greater quantum jump from the horizontal X-Y plane. 

This leads to the conundrum of how functional biopolymeric sequences such 

as protein families can be discovered in the overall sequence space when, 

necessarily, the higher the FSC, the less probable it becomes and, from Table 

1, those probabilities are quite miniscule. 

 

7. Biological FSC is unique in nature 
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 Although FSC is found within human languages and computer code, the 

only known occurrence in nature occurs within biopolymers such as DNA, 

RNA and proteins [3]. To appreciate the oddity of FSC in biopolymers, it is 

essential to understand the distinction between constraints and controls. 

Constraints are imposed upon any physical system found in nature by the 

deterministic laws of nature, relevant initial conditions, and probabilistic 

limitations to possible outcomes [23]. The deterministic outcome of constraints 

is often referred to as necessity. Deterministic necessity steers a process toward 

repeatability and order. Thus, sequences determined by the constraints thus 

described will be highly ordered, demonstrating high OSC. The relaxation of 

constraints, or necessity, permits greater degrees of freedom in the outcome 

and is often referred to as chance. Chance, itself, is not causal but is permitted 

by the relaxation of the constraints imposed by the laws of nature, initial 

conditions, and probabilistic boundaries [24]. Chance, or the relaxation of 

necessity, in sequence formation, permits RSC. Thus, natural processes can be 

summarized by chance and necessity, the interplay of which produces OSC 

and RSC. Natural processes, therefore, are known to be limited to producing 

effects that lay in the XY/OSC-RSC plane in Figure 1. These effects determine 

the ground state of any sequence, as described earlier. FSC, however, requires 

a deviation from the ground state to achieve a particular function, as shown in 

Eqn. (3). To clarify, FSC requires a deviation from the normal results of 

natural processes operating in the XY plane (Figure 1). Small deviations from 

the ground state are statistically possible, such that low-level FSC can be 

achieved for very low-level functions, but the greater the FSC value ζ required 

by a particular function, the greater the deviation from the ground state. FSC, 

therefore, represents an anomaly within nature, a deviation from mere chance 
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and necessity. To clarify, FSC represents something that one would not predict 

given the natural processes of OSC and RSC; it is improbable and the higher 

the FSC, the more improbable it becomes as shown experimentally (column 6, 

Table 1). Biological proteins require very high levels of FSC, as illustrated in 

Table 1. For this reason, chance and necessity define the ground state of a 

sequence, but are inadequate to produce the kind of cybernetic algorithms 

found within the genomes of life [25]. 

 The cybernetic requirements of biological life, encoded within 

biopolymers such as DNA, require the addition of controls which can steer the 

physical system away from the ground state to produce the desired function 

[23]. Each step, or site, in a sequence represents a decision node that 

determines the course of physicodynamic events in such a way that the 

physical system can be steered in the direction of the desired function. 

Computer code, for example, is an illustration of FSC in the encoding of 

prescriptive information, using a physical medium, to steer the physical system 

(a computer) such that a desired function is achieved. FSC is only known to be 

achieved by encoding formal choices into a physical information storage 

medium, such as DNA through a series of volitional decisions at each 

configurable switch symbol. The large deviation from the ground state 

determined by constraints is an indicator that it has been achieved through the 

application of controls that arise out of choice contingency or volition. It is 

easy to understand why human languages and designed computer code exhibit 

such a high degree of FSC, since human intelligence provides the necessary 

volitional agency required to select the proper switch configurations. The high 

level FSC observed in biopolymers, however, successfully locates miniscule 

areas of sequence space, as shown in column 6 of Table 1, requiring very tight 
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controls. The results are high-FSC sequences representing massive deviations 

from the ground state, deviations from the normal OSC-RSC of natural 

processes. These examples of FSC, therefore, represent something that is 

unique in nature. In other words, FSC breaks out of the XY plane in Figure 1 

and into the Z dimension, deviating from natural processes of chance and 

necessity that produce OSC and RSC. 

 

8. The effect of mutations on FSC 

 

 The set of all sequences M(Ex) that can perform a given function forms 

the functional sequence space within the larger sequence space. For example, 

Table 1 shows that the universal protein RecA has an estimated number of 

10122 functional sequences within the larger 320-site sequence space, assuming 

site independence. Site interdependency will substantially reduce this number, 

as discussed earlier, but site independence will be assumed here for the sake of 

simplicity. These 10122 RecA sequences form the functional sequence space for 

RecA. Mutations that merely move the sequence from one area of functional 

sequence space to another area of functional space will have little effect on the 

FSC of the sequence. As discussed in Section 5, FSC is not measured on the 

basis of a single sequence, but on a large set of functional sequences. Some 

sequences, however, may be more efficient than others, as pointed out by 

Hazen et al. [2]. If that is the case, then there can be some variation in the 

value ζ for the FSC of a protein family. This is represented in Figure 1 as a 

range of Z-values in the FSC of the hypothetical protein family shown in the 

model. Therefore, mutations within functional sequence space may reduce 

FSC as they become functionally less efficient until the mutations reduce the 
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functionality of the sequence below the threshold required by biological life 

[2]. At that point, any further change can be measured using Eqn. (7) relative 

to the original function.  

 With regard to a protein with function fa evolving into a completely novel 

structure with novel function fb, once a sequence has mutated out of fa 

sequence space, the evolutionary path may have to traverse a region of non-

folding, non-functional sequence space. As pointed out by Blanco, natural 

selection is of no use in navigating non-functional sequence space, so further 

mutations will be unguided and take the form of a random walk [26]. Given 

the results shown in Table 1, and given experimental evidence [27], the area of 

functional sequence space for stable, folding functional proteins may be so 

miniscule, that attempting to locate them without the aid of controls may 

exceed an objective universal plausibility cut-off [28]. Mutations that occur 

within functional sequence space can move a functional sequence to an area 

within functional sequence space that may enhance fitness. However, given the 

miniscule size of functional sequence space, as suggested by Table 1, an 

obvious prediction is that an accumulation of mutations will tend to be 

harmful.  

 Since natural constraints tend to produce repeatable results, non-random 

mutations imposed by natural constraints will tend to move the sequence in the 

direction of order, or OSC. As shown in Figure 1, this constitutes movement in 

the XY plane which can move the sequence outside the area of functionality 

shown in Figure 1b. Thus, as can be seen in Figure 1b, both a limited amount 

of random and non-random mutations can be permitted provided the sequence 

remains within the functional area. But both random and non-random 

mutations can render the sequence non-functional, collapsing the Z component 
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to zero, if the mutations move the sequences outside of the small functional 

sphere representing a hypothetical protein family. 

 

9. Conclusion 

 

FSC can be measured by extending Shannon uncertainty to include the 

joint variables of data and function. This measure can provide an estimate of 

the variability and hence the size of the functional sequence space for a 

specific functional protein. It also can measure change in a sequence due to 

mutation relative to the required functionality. The information calculated 

from an observed sequence ensemble constrained by the specified functionality 

then reflects the underlying sub-molecular information structure that could be 

used to reconstruct the structural or functional properties of the molecule. FSC 

thus provides a foundational measure that can form the basis for more detailed 

analysis.  
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